LIVING CATIONIC POLYMERIZATION OF ISOBUTYL VINYL ETHER BY THE CF3C0,H-SnC14-nBu4NC1 SYSTEM: *IN SITU* DIRECT ANALYSIS OF THE GROWING SPECIES BY 'H, 13C and 19F NMR SPECTROSCOPY *

HIROSHI KATAYAMA, MASAMI KAMIGAITO,? MITSUO SAWAMOTOS **AND** TOSHINOBU HIGASHIMURA

Department of Polymer Chemistry, Kyoto University, Kyoto 606-01, Japan

Direct ¹H, ¹³C and ¹⁹F NMR spectroscopic analysis was carried out on the carbocationic intermediate generated in the interaction of tin(IV) chloride $(SnCl₄)$ with the adduct [4, CH₃CH(OiBu)OCOCF₃] of isobutyl vinyl ether (IBVE) and trifluoroacetic acid $(CF₃CO₂H)$, either in the presence or in the absence of tetrabutylammonium chloride. The reactions were to mimic the living cationic polymerization of IBVE by the 4-SnCI, initiating system (with added nBu,NCI) that was also found in this study. In CD,CI, solvent at **-78** "C, the ¹H and ¹³C NMR analysis revealed the formation of a carbocationic intermediate $[CH_3C^+H(OiBu)]$ that is in a rapid exchange equilibrium with the covalent counterpart 4. For the first time, the cation formation was further supported by ¹⁹F NMR analysis on the counteranionic part (CF₃COO⁻) in 4, where, with SnCl₄, the CF₃ group gave a broadened signal that appeared clearly downfield relative to that in the covalent form. These and other results, which are in close correlation with the corresponding polymerizations, demonstrated the following: (i) the SnC1,-assisted generation of carbocationic species from the covalent ester 4; (ii) a rapid exchange between the cation and its covalent precursor 4; (iii) the relatively high cationic concentration in the *salt-free* system, where no living polymerization occurs; and (iv) the effective suppression of the cationic species in the presence of the salt, which proved to be the prime key factor for living polymerization.

INTRODUCTION

Cationic polymerization of vinyl monomers is defined as an addition polymerization reaction where the reactive centre is a cationic intermediate that adds to a monomer molecule by opening the π -bond to form a new cationic centre. As shown in equation (l), the reaction consists of successive electrophilic additions of the polymeric growing cation, derived from an initiator and a monomer, to remaining monomers. If each addition reaction occurs without such undesirable reactions as chain transfer and termination, it consists only of initiation and propagation and is thereby called as living polymerization. In general, however, **the** growing carbocations are highly reactive but unstable and subject to a number of side-reactions [equation (2)], and it has long been considered almost impossible to prepare polymers with controlled structures

by cationic vinyl polymerization. This had been in contrast to long-known living anionic³ and cationic ringopening4 polymerizations where the intermediates **are** and oxonium respectively.

However, such a view on cationic vinyl polymerizations proved to be wrong when the living cationic

Received 16 August 1994 Revised 20 October 1994

^{&#}x27;This work was presented in part at the **42nd** Annual Meeting of the Society of Polymer Science, Tokyo, Japan, September 1993, paper 20D15¹ and at the International Conference on Frontiers in Polymerization, Liège, Belgium, October 1993.² t Research Fellow of the Japan Society for the Promotion of Sciences.

 \ddagger Author for correspondence.

CCC 0894-3230/95/040282-11 *0* 1995 by John Wiley & Sons, Ltd.

polymerization of vinyl ethers was accomplished with the use of a mixture of hydrogen iodide and iodine or the $HI-I₂$ initiating systems.⁵ Since then, a large number of living cationic polymerizations have been found for various monomers including vinyl ethers, isobutene and styrenes.⁶ Most of the initiating systems for these living polymerizations are composed of two components, a cationogen (initiator) such as a protonic acid (HB), reactive alkyl chloride or acetate, and a metal halide or Lewis acid (activator; MX,). **As** illustrated schematically in equation (3), **HB** MX" *soso* CH2= CH -t CHs-CH-B - CHj-CH--.B--.MXn I I I *OR* **OR** *1* **OR ²**

$$
CH_{2} = \begin{bmatrix} H^{\mathbf{B}} & CH_{3} - CH_{3}B & MX_{n} \\ OR & OR & OR \end{bmatrix} + CH_{3} \begin{bmatrix} 80 & 80 \\ CH_{3} - CH_{3}B & MX_{n} \\ OR & OR \end{bmatrix}
$$
\n
$$
\begin{array}{c}\nCH_{2} = CH_{1} - OR \\
CH_{2} = CH_{1} - OR \\
CH_{2} - \begin{bmatrix} 80 & 80 \\ CH_{1} - \frac{80}{10} & MX_{n} \\ OR & 3 \end{bmatrix} + Llying \\
OR & 3\n\end{array}
$$
\n(3)

for example, the initial reaction is the quantitative electrophilic addition of HB to a vinyl monomer to form an adduct **(l),** the C'-B bond of which is then electrophilically activated by MX_n into species 2. This activated form of **1** is the actual initiating entity that commences the living propagation subsequently mediated via its polymeric homologue **(3).**

To achieve living cationic polymerization, a judicious choice of initiating systems is important. Why, then, do these specific initiating systems induce controlled or living polymerizations via supposedly cationic intermediates which have been considered unstable? Although it appears true, as we have repeatedly pointed out, ^{6a,c} that nucleophilic interaction of counteranions or occasionally added bases or salts with the growing carbocation is of primary importance, it is still not fully understood and often controversial what the nature of the living propagating species is, and whether or not there is a difference between living and non-living species.⁷

To clarify these points, it would be of interest to analyse model growing species **[2;** equation **(3)],** *in sku,* directly, and spectroscopically, under the conditions mimicking the actual living polymerizations. Thus, by H and $\mathrm{^{13}C}$ NMR spectroscopy we have recently analysed the model growing species in the living cationic polymerization of isobutyl vinyl ether (IBVE) by the $\text{HCl}-\text{ZnCl}_2$ and $\text{HCl}-\text{tin}(\text{IV})$ chloride (SuCl₄)-tetrabutylammonium chloride (nBu₄NCl₁⁸⁻¹⁰) **As** shown in equation (3), the living growing end **(2** and **3)** should consist of three components, the growing carbocation $(-\neg C^+)$ from the monomer, the counteranion (B^-) from the initiator HB and the activator (MX_n) associating with B⁻. Our NMR analysis was in fact directed toward only one of these three, i.e. the carbocationic part. Those studies demonstrated that a carbocationic intermediate is indeed generated from the HCl adduct $(1; B = Cl)$ of IBVE and a Lewis acid and that the concentration of the ionic species is very low

under the conditions where living polymerization occurs. However, the interaction between the counteranion and the carbocation remained unclear, because the HCl-based systems inherently fail to permit the NMR analysis of the counteranionic part, or the chloride anion.

To analyse the growing species more comprehensively, therefore, in this study we employed trifluoroacetic acid $(CF_3CO₂H)$ as an initiator in conjunction with a Lewis acid $(MX_n: SnCl₄$ and $ZnCl₂$) for IBVE polymerization. The counteranionic parts to be generated in these systems contain not only a 13 C but also a ¹⁹F nucleus, which has a spin number of 1/2 and a high sensitivity to NMR (the overall sensitivities are 0.83 and 4700 relative to ¹H and ¹³C, respectively). This system thereby permits the direct analysis of not only the carbocationic part by ¹H and ¹³C NMR but also the counteranionic part by ¹⁹F and ¹³C NMR [equation (4)]. **CFF**

CFF CRF

CH₂ **CFF**

CH₂ **CH₂ CH₂ C**

In the first part of this study, we investigated the polymerization of IBVE by CF,CO,H in conjunction with $ZnCl₂$ and $SnCl₄$. As does hydrogen chloride, $8-10$ CF,CO,H forms an ester **4** with IBVE, but **4** would initiate polymerizations of IBVE when coupled with an appropriate Lewis acid. In fact, we have already reported that the $4 - ZnCl_2$ system induces living cationic polymerization of IBVE in toluene.' In this study, polymerizations by **4** in conjunction with not only ZnC1, but also a stronger Lewis acid, SnCl₄, were carried out in CH,Cl, to investigate the effects of the Lewis acidity of metal halides. The second part concerned *in situ* 'H, 13 C and 19 F NMR analysis of model growing terminals generated from **4** and these two activators, especially focusing on the analysis of the counteranionic part and the effects of ester fragments, counteranions, and Lewis acids.

RESULTS AND DISCUSSION

Living cationic polymerization

Trifluoroacetic acid $(CF₃CO₂H)$ reacts quantitatively with IBVE to form adduct 4 with a covalent ester bond, which is incapable of initiating polymerization (see Experimental).⁸ However, IBVE was polymerized with **4** in conjunction with ZnC1, and SnCl,.

As shown in Figure 1, quantitative polymerization occurred with a weak Lewis acid, $ZnCl₂$. In contrast, the system with SnCl₄, a stronger Lewis acid, induced an almost instantaneous, extremely rapid, and thereby uncontrollable polymerization. Therefore, we added to this system nBu_aNCi , which is effective in inducing the

Figure 1. Time-conversion curves for the polymerization of IBVE with $4-MX_n$ in the absence and the presence of nBu₄NCl in CH₂Cl₂ at -15 °C. [Monomer]₀ ([M]₀) = 1.0 M; [4] (initiator)]₀ = 20 mM; [MX_n (activator)]₀ = 10 mM; [nBu₄NCl (added salt) $]_0$ as indicated

living polymerization of **IBVE** by the HC1-SnCI, initiating system. Although the polymerization in the presence of nBu_4NCl equimolar with respect to $SnCl_4$ (10 mM) was still rapid, a higher salt concentration (14 mM) led to a slower polymerization that was similar in rate to the ZnC1,-mediated counterpart without the salt.

Figure 2 shows the molecular weight distribution (MWD) curves of the polymers obtained with the 4-SnCl, initiating system at varying salt concentrations. The polymers obtained in the absence of $nBu₄NCl$ had a broad MWD, and so did that in the presence of nBu_aNCl equimolar with respect to $SnCl_a$ equimolar $(\overline{M}_{\nu}/\overline{M}_{\nu} \approx 1.6)$. However, with use of a slightly larger amount of nBu_4NCl , the MWD became very narrow $(\overline{M}_{\nu}/\overline{M}_{\nu} \leq 1.1)$.

Figure **3** plots the number-average molecular weights (\overline{M}_n) of polymers against monomer conversion for the polymers obtained with either $ZnCl₂$ (salt free) or $SnCl₄$ (with 14 mM nBu₄NCl). In both cases, the \overline{M}_n increased in direct proportion to conversion and agreed with the calculated values assuming that one molecule of 4 generates one living polymer chain. Therefore, despite the difference in the narrowness in polymer MWD, the 4-SnC1, system induces living polymerization of IBVE in the presence of nBu4NC1, whereas a weaker Lewis acid, ZnCl,, also gives a similar living polymerization even without nBu,NCl (Scheme 1). The broader MWD with $ZnCl₂$ is apparently due to the slow interconversion between the dormant species and the activated species (the more rapidly the interconversion between the activated (ionic) species and the dormant (covalent) species occurs under the condition of living cationic polymerization, the narrower the MWD of the obtained polymer becomes; the effects of the rate of such inter-

Figure 2. Effects of added nBu₄NCl on the IBVE polymerization with $4-\text{SnCl}_4$ in CH₂Cl₂ at -15°C. 4-SnCl₄ in CH₂Cl₂ at -15° C. $[M]_0 = 1.0 \text{ M};$ $[4]_0 = 20 \text{ mM};$ $[SnCl_4]_0 = 10 \text{ mM};$ $[nBu₄NC1]₀ = 0$, 10 and 14 mM $[4]_0 = 20$ mM;

conversion on the polymer MWD have been discussed¹¹). These results for the $CF₃CO₂H$ adducts (4) are very similar to those with the adduct of HCl as an initiator.' However, the overall polymerization rates with 4 were much smaller than those with the HC1 based systems, owing to the stronger C —OCOCF, linkage than the C—Cl bond.

Direct NMR analysis of model reactions

To clarify the nature of the growing species in the CF,CO,H-mediated polymerizations, the interaction of 4 with MX_n $(MX_n = SnCl_4$ and $ZnCl_2$) was directly analysed by ¹H, ¹³C and ¹⁹F NMR spectroscopy, especially focusing on the counteranionic part formed from trifluoroacetate anion $(CF_3CO_2^-)$ and MX_n . Here 4 is considered as the simplest model of the growing polymer terminal in the $4-MX_n$ -initiated polymerization. ¹H, ¹³C and ¹⁹F nuclei were monitored under identical conditions, so that their spectral correlations could be discussed.

In this section, we investigated the following in relation to the polymerization results discussed above: (1) *in situ* direct observation of the carbocation and the counteranionic part generated from the adduct 4 by H , ¹³C and ¹⁹F NMR spectroscopy; (2) the relationships between the NMR spectra of the model reactions and the living character of the corresponding polymerizations; **(3)** the effects of the nucleophilicity of the counteranionic part on the living polymerizations.

Figure 3. Living polymerization of IBVE with (Δ) 4-ZnCl₂ or (O) 4-SnCl₄ in the presence of nBu₄NCl in CH₂Cl₂ at -15 °C. $[M]_0 = 1.0$ M; $[4]_0 = 20$ mM; $[ZnCl_2]_0 = 10$ mM, $[SnCl_4]_0/[nBu_4NCl]_0 = 10/14$ mM. The 'Calcd' solid line indicates the calculated \overline{M}_n assuming the formation **of** one living polymer per molecule of 4

Because the counteranionic part is composed of the counteranion (B-) from the initiator **HB** (or adduct *4)* and the Lewis acid activator (MX_n) , not only the basicity of B^- but also the acidity of MX_n would determine its overall nucleophilicity, which will seriously affect the nature of the growing species.

Thus, we studied the effects of B^- and those of MX_n separately.

In situ *13C and I9F NMR analysis of the counter anion* (B^-) in the 4 -SnCl₄ system: evidence for the generation *of carbocationic species*

Figure **4** shows the 'H, **I3C** and "% NMR spectra of the mixtures of the *4* and SnCl, in the absence and the presence of $nBu₄NCl$ in $CD₂Cl₂$ at $-78 °C$ where the concentration of 4 is constant $([4]_0 = 200 \text{ mm})$. As shown in Figure 4(A) for 4 alone, the signal of the α methine b ($-CH$ $-$ O $-$), which is adjacent to the ester moiety, appeared at 102 ppm in 13 C NMR and at 6.0 ppm in $\frac{1}{1}$ NMR as a sharp quartet. The two protons c_1 and c_2 of the pendant methylene adjacent to the ether oxygen $(-OCH_2)$ are chemical shift non-equivalent owing to the asymmetric α -carbon to give a pair of resonances around **3.3** ppm (doublets of doublets).

On mixing SnCI, to a cooled solution of *4* under saltfree conditions [Figure **4(B)** and (C)], the spectra changed clearly: the methine proton (H^b) and carbon (C^b) both shifted downfield and broadened, and the higher the SnCl, concentration the greater were the downfield shifts. Along with these changes, the initially separate methylene proton resonances coalesced into a sharp doublet and also shifted downfield. These spectral changes show that the covalent C—OCOCF, bond in 4 is polarized by $SnCl₄$ to give carbocationic species (5) , that it is in a rapid exchange equilibrium with the covalent precursor **4** and that the higher the SnCI, concentration, the higher is the cation concentration. **[As** will be mentioned later, the observation from the side of the carbocation in part by H and H^3C NMR shows that the extent of the downfield shift of the *a-*

Figure 4. ¹H, ¹³C and ¹⁹F NMR spectra of (A) 4 and (B-D) mixtures of 4 and SnCl₄ in the absence and the presence of nBu₄NCl in $CD_2Cl_2-CCl_4$ (4:1) at -78 °C with varying SnCl₄ concentration. [4]₀ = 200 mM; [SnCl₄]₀ and [nBu₄NCl]₀ as indicated. The asterisked signal is for the α -methylene protons in the salt $[(CH_3CH_2CH_2CH_2^*)_4NC1]$

methine of the HB-IBVE adducts is smaller in **4** $(-B = -OCOCF₃)$ than in **10** $(-B = -Cl)$, which indicates that the concentration of the carbocationic species from **4** is lower (see Figures 8 and 9).]

On the other hand, the signals of the counteranion ($CF₃CO₂$) from 4 are seen in the ¹³C and ¹⁹F NMR spectra. For **4** alone [Figure 4(A)], the carboxyl carbon d (-OCO-) and the trifluoromethyl carbon e (-CF₃) appeared in ¹³C NMR at 157 and 114 ppm, respectively, both as sharp quartets owing to the ¹⁵C-¹⁹F spin-spin coupling. In ¹⁹F NMR, the signal of CF₃ group e appeared at -77.75 ppm as a sharp singlet. After the $SnCl₄$ addition [Figure 4(B) and (C)], along with the changes in the α -methine signal b (see above), all of the carboxyl carbon d in ¹³C NMR and the CF₃ e in ¹⁹F NMR shifted downfield and broadened, which shows the generation of the anion $CF_3CO_2^-$. The broadness of these peaks also indicates a rapid exchange between the carbocationic species *5* and its covalent precursor **4.** Thus, the carbocation formation has demonstrated by monitoring not only the carbocationic component of a model growing species by ${}^{1}H$ and ${}^{13}C$ NMR but also the counteranionic component by ¹³C and ¹⁹F NMR. These results suggest the participation of the carbocationic intermediate 5 in the 4-SnCl₄-initiated polymerization, because polymerizations do not occur until the covalent precursor 4 is mixed with SnCl₄. Importantly, however, under these conditions, the IBVE polymerization is not living (cf. Figure **2).**

When a sufficient amount of $nBu₄NC1$ was additionally mixed to the mixture of 4 and $SnCl₄$ [Figure $4(D)$], under which condition living cationic polymerization occurred (Figures **2** and 3), both the methine proton (H^b) and carbon (C^b) returned to the original upfield positions for **4** alone and became sharp again, which indicates the suppression of the ionic species *5* by adding the salt. The salt addition also led to a new signal, the quartet at 5.7 pprn in the 'H **NMR** spectrum and the sharp singlet at 97 ppm in ¹³C NMR spectrum that are assigned to the α -methine of HCl-IBVE adduct **(10** in Figures 8 and 9). Tie formation of a small amount of **10** indicates the anion exchange between $CF₃CO₂$ ⁻ from 4 and the chloride anion $(Cl⁻)$ from nBu_aNCl and/or $SnCl_a$, which in turn supports further that even under the salt-present condition, the carbocationic species was actually generated, although at an extremely low concentration. The CF, resonance *e* in ¹⁹F NMR also returned toward the original position and also sharpened. Thus, the suppression of the ionic species by adding the salt was confirmed by the observation of not only the carbocation $(^1H$ and ^{13}C NMR) but also the counteranion (¹³C and ¹⁹F NMR). Close inspection of the 19 F NMR spectrum in Figure 4(D) also revealed that the CF_3 signal e is still slightly downfield relative to that for the covalent precursor **4** alone [Figure $4(A)$]. This slight difference between the spectra for the covalent form **4** and the salt-suppressed ion $(4 \rightleftharpoons 5)$ was not detectable by ¹H and ¹³C NMR,

and the highly sensitive 19 F NMR analysis proved effective in distinguishing these two systems.

The slight downfield shift of the CF_3 signal may indicate coordination of $SnCl₄$ to the ester moiety of 4, even in the presence of the salt. To understand such an interaction more clearly, ¹⁹F NMR spectra were taken for a series of mixtures of SnC1, and covalent or ionic trifluoroacetates (Figure *5).* Figure 5(C) is the spectrum of $nBu_4N^+CF_3CO_2^-$ (8), which is considered as a model of the anion $CF_3CO_2^-$ alone; the CF₃ signal appeared as a sharp singlet at -77.09 ppm, clearly more downfield than did the covalent species $\vec{4}$ [Figure 5(A); -77.75 pprn]. The observed difference also supports that the downfield shift and its broadening of the CF, signals is due to the generation of the counteranionic part (and the carbocation) in the $4-SnCl₄$ system [Figure 5(B)]. When $SnCl₄$ was mixed with 8 [Figure $5(D)$], where a CF₃CO₂⁻-SnCl₄ complex or a pentacoordinated tin anion $[CF₃CO₂-SnCl₄]$ would arise, the CF_3 signal in fact appeared as a sharp singlet at a much more downfield position (-75.30 ppm) , near the signal of silver trifluoroacetate $(CF_3CO_2^-Ag^+)$ [Figure show that the existence of an electron-deficient metal

Figure 5. ¹⁹F NMR spectra of (A) 4 (B) 4-SnCl₄, (C) 8, (D) **8-SnCl₄** and (E) $Ag^+CF_3CO_2^-$ at -78 °C. (A) and (B) in CD₂Cl₂ - CCl₄ (4 : 1); $[4]_0 = 200$ mM; $[SnCl_4]_0 = 400$ mM. (C)
and (D) in CD₂Cl₂; $[8]_0 = 200$ mM (C), and (D) in CD_2Cl_2 ; [8]₀=200 mM (C), $[8]_0/[SnCl_4]_0 = 100/100$ mm (D). (E) in toluene-d_s; $[Ag^{\dagger}CF_3CO_2^-]_0 = 200$ mM

around $CF₃CO₂$ causes a downfield shift of the ¹⁹F signal of $CF₃CO₂$. It follows that the signal of the counteranionic part (schematically $CF_3CO_2^- \cdots SnCl_4$) to be formed from the $4 - SnCl₄$ system would appear around -75 ppm, but the signal [Figure $5(B)$] is actually detected at a more upfield position, and the CF, chemical-shift difference between 4 and $4 - SnCl₄$ is clearly smaller than that between 4 and $8 - SnCl₄$ [Figure $5(D)$]. Thus, the ionization efficiency of the $4-\text{SnCl}_4$ pair is relatively low (see earlier comment in brackets), but the generation of the ionic species in even such a small amount makes the control of IBVE polymerization difficult (cf. Figure 2).

Apart from the carbocation formation from 4, the small downfield ¹⁹F NMR shift in the $4 - SnCl₄$ system might simply be due to a loose coordination of $SnCl₄$ to the ester carbonyl in 4, as often observed for other carboxylate-metal halide mixtures. To test this possibility, the interaction of $SnCl₄$ and ethyl trifluoroacetate $(CF₃CO₂C₂H₅; 9)$ was analysed by ^IH and ¹⁹F NMR spectroscopy (Figure 6). Obviously, the primary ester could hardly be ionized into an ethyl cation by SnCl₄. On mixing 9 and $SnCl₄$ [Figure 6(B)], the methylene and the CF, resonances indeed shifted downfield slightly but without broadening, and the shift was much smaller than in the $4-SnCl₄$ system. Therefore, $SnCl₄$ does coordinate to 9 but cannot induce any ion-ester exchange. Separate experiments also showed the absence of IBVE polymerization by $9 - SnCl₄$. Thus, these spectral observations with 9 further support the participation of the ionic species *5* in the 4-SnC1, initiated polymerization.
In the H and H ¹⁹F

NMR spectra of the 9-SnCl₄-nBu₄NCl system [Figure $6(\overline{C})$], no downfield shifts were observable, where the salt most likely weakens the coordination of $SnCl₄$ to the ester by forming a weaker Lewis acid, $SnCl_s$.

'Hand I9F NMR analysis of the 4-ZnC1, *system: effects of Lewis acids MX,*

Not only the use of $SnCl₄$ with added nBu₄NCl but also that of a weak Lewis acid, $ZnCl₂$, without the salt permit living polymerization of IBVE with 4 (Figure 3). The interaction of 4 and ZnCl₂ was therefore investigated by ¹H and ¹⁹F NMR spectroscopy (Figure 7). As shown in Figure 7(D), the α -methine signal *b* in the ¹H NMR spectrum appeared almost at the original position for 4 alone [Figure $7(A)$], and the CF₃ signal *e* in the ¹⁹F NMR spectrum shifted slightly downfield but remained sharp. Thus, with a weak acid, $ZnCl₂$, as an activator, the generation of the ionic species was kept at an extremely low concentration even in the absence of nBu,NCl, and the spectra for the 4-ZnCI, [Figure $7(D)$] and the $4-\text{SnCl}_4-\text{nBu}_4NCl$ [Figure $7(C)$] systems are very similar; note that both systems lead to living IBVE polymerization. A very small peak at

Figure 6. Interaction of ethyl tnfluoroacetate (9) with SnCI, and nBu,NC1 in CD,CI,-CCI, **(4** : 1, v/v) at -78 "C followed **by** 'H and '% NMR spectroscopy. **(A)** 9 alone; (B) 9-SnC1,; (C) 9-SnC1,-nBu4NCI. [9] = 200 **mM;** [SnCl,] = 100 **mM;** [nBu,NCl] = **140 mM**

Figure 7. Effects of Lewis acids (MX_n) and added nBu₄NCl on the ¹H and ¹⁹F NMR spectra of 4-MX_n mixtures in CD₂Cl, at -78 °C. (A) 4 alone; (B) 4-SnCl₄; (C) 4-SnCl₄-nBu₄NCl; (D) 4-ZnCl₂ [with 10 vol.% Et₂O from the stock solution of ZnCl₂ (it has already been shown⁸ that diethyl ether, i.e. the solvent for ZnCl₂, does not affect the nature of living polymerization)]. $[4] = 200$ mM; $[SnCl₄] = [ZnCl₂] = 100$ mM; $[nBu₄NC1] = 140$ mM

exchange, as also observed in the $4-\text{SnCl}_4-\text{nBu}_4\text{NC1}$

Relationships between living cationic polymerization and the NMR spectra of the model reactions

The above-discussed results demonstrate a close correlation between the living nature of the IBVE

5.74 ppm in Figure 7(D) indicates the formation of the polymerizations with 4 and the NMR spectra of the HCl–IBVE adduct (10) due to the counteranion corresponding model reactions. For example, in the HC1-IBVE adduct (10) due to the counteranion corresponding model reactions. For example, in the exchange, as also observed in the 4-SnCl₄-nBu₄NCl observation of the carbocationic component by ¹H and system. I¹³C NMR (Figures 4 and 7), the extensive downfield chemical shifts of the α -methine signal β in the $4-SnCl₄$ system [salt free; Figure 7(B)] indicate that a relatively high concentration of the carbocationic species **is** unfavourable for living polymerization. In contrast, when the cation is hardly observable as in the $4-SnCl₄-nBu₄NC1$ [Figure 7(C)] and the $4-ZnCl₂$ [Figure 7 (D)] systems, living polymerizations occur. Similar relationships have been found between the IBVE polymerizations with the HC1-IBVE adduct **(10)** and the NMR spectra of relevant model reactions (see Figures **8** and 9; Refs 9 and 10). Thus, to achieve living cationic polymerization, it is important to suppress carbocationic growing species at an extremely low concentration below the **NMR** detection limits.

A similar correlation was seen in the observation of the counteranionic component by 19 F and 13 C NMR. The CF₃ resonance *e* shifted downfield in the salt-free $4 - SnCl₄$ system [Figure 7(B)], which gave non-living polymers. It appeared very close to the downfield position for the CF, of 4 alone in the $4-\text{SnCl}_4-\text{nBu}_4\text{NCI}$ [Figure 7(C)] and the $4 - ZnCl$, [Figure $7(D)$] systems, under which conditions living polymerizations proceeded. The ¹⁹F NMR analysis also demonstrated that SnCI, actually interacts (coordinates) with $CF₃CO₂⁻$ in both living and non-living polymerizations.

CF3C0,H-SnCl, vs HCI-SnCl, systems: effects of counteranions (B -)

We have recently reported that the $HCl-SnCl₄$ initiating system induces living cationic polymerization of IBVE in the presence of $nBu₄NCl⁹$. The HCl-based system is similar to the CF,CO,H-based counterpart discussed here, except for the difference in the counteranions B⁻ in the protonic acids. The difference in turn permits us to examine the effects of B^- on the nature of growing species. Figures 8 and 9 show the ¹H and ¹³C NMR spectra, respectively, of model reaction mixtures $[\overline{H}B - IBVE$ adduct (4 or 10) + SnCl₄+nBu₄NCl] corresponding the two initiating systems. Overall results are also summarized in Table 1. When adducts 4 $(-B = -OCOCF_3)$ and 10 $(-B = -Cl)$ were mixed with $SnCl₄$ in the absence of the salt [Figures 8(B) and 9(B)], both α -methine signals *b* shifted downfield; the downfield shift with 4 is much smaller than with **10,** indicating that the concentration of the ionic species generated from 4 is much lower than that from **10.** This suggests that the C-OCOCF, bond in 4 **is** more difficult to ionize than the C--CI bond in **10,** which is consistent with the larger pK_a of CF_3CO_2H than of HCl, as shown in Table 1. Thus, it has been clarified by the direct NMR investigations that the property of the counteranionic part $(B^{-} \cdots M X_{n})$ is influenced not only by the Lewis acidity of **MX,** but also by the basicity of B⁻; both factors, in turn, affect the instantaneous concentration of the carbocationic species.

In the presence of $nBu₄NC1$, where the living polymerizations proceeded with both initiating systems, the *a*methine signals returned to the original upfield positions for the respective adducts [Figures **8(C)** and 9(C)]. Importantly, the non-equivalent methylene proton signals c_1 and c_2 of 10 coalesced into a sharp doublet, whereas those of 4 remained split resonances. This indicates that the covalent-ionic exchange in 4-SnC1, is slower than that in $10 - SnCl₄$, which may be caused by the fact that the rate-determining step of the exchange reaction is the generation of the ionic species by disrupting the C —B bond with $SnCl₄$. Hence these direct

Figure 8. Effects of counteranion (B^-) on ¹H NMR spectra of HB-IBVE adducts $(4 \text{ and } 10)$ with SnCl₄ in CD₂Cl, at $-78 \degree$ C. (A) adduct alone $(4, -B = -CI; 10, -B = -OCOCF_3)$ with 20 vol.% CCl₄ from the stock solutions of the adducts; (B) adduct-SnCl₄; (C) adduct-SnCI₄-nBu₄NCl. [Adduct] = 200 mM; [SnCl₄] = 100 mM; [nBu₄NCl] = 140 mM. The asterisked signals are for the α methylene protons in the salt $[(CH_3CH_2CH_2CH_2)_4NC1]$

Figure 9. Effects of counteranion (B^-) on ¹³C NMR spectra of HB-IBVE adducts (4 and 10) with SnCl₄ in CD₂Cl₂ at -78 °C. (A) **adduct alone (4, -B = -Cl; 10, -B = -OCOCF₃) with 20 vol.% CCI₄ from the stock solutions of the adducts; (B) adduct-SnCl₄; (C) adduct-SnC1,-nBu,NCI. See the caption** for **Figure 8 for detailed conditions**

Table 1. Effects of **counteranions (B-)** on **the** IBVE **polymerization and the corresponding model reactions**

$_{\rm HB}$				Model reactions (NMR analysis) b			
	IBVE polymerizations ^a $MX = SnCl4$ $MX = SnCla$		$MX = ZnCl$	C ⁺ concentration		Covalent-ionic	Anion basicity
	(salt free)	(added salt)	(salt free)	Salt free	Added salt	exchange	$(pK, in DMSO)^c$
HCI ^d	А	в	в	High	Very low	Faster	1.8
HOC(O)CF ₁ °		в		Low	Very low	Slower	3.45

'Polymerization of IBVE **with the** HEI-IBVE **adduct-MX, initiating system. (A) instantaneous polymerization, not living;** (B) **living, very narrow** MWD $(M_w/M_n < 1.1)$; (C) living, broad MWD.

siru NMR **analysis of model reactions with the** HB-IBVE **adduct-SnCl, at -78 "C. Reaction conditions:** HB = HCI, **in CD,Cl,; HB** = **CF,CO,H. in** $CD_2Cl_2-CCl_4$ (4:1, v/v). [Adduct] = 200 mM; $[SnCl_4] = 100$ mM; $[nBu_4NC1] = 140$ mM (see Figures 8 and 9). **'Ref. 12.**

^d **IBVE** was polymerized in CH₂Cl₂ at -15 °C; $[M]_0 = 0.38$ M; $[10]_0 = 5$ mM; $[MX_n]_0 = 2$ mM; $[nBu_4NCl]_0 = 2-4$ mM.⁹

NMR analysis of the model reactions also clarified that the counteranion affects not only the ease of the ionization of the C-B terminus by MX_n but also the rate of the covalent-ionic exchange.

EXPERIMENTAL

Materials. IBVE (Tokyo Kasei; purity >99%) was washed with 10% aqueous sodium hydroxide solution and then with water, dried overnight with potassium hydroxide (pellets) and distilled twice over calcium hydride before use. CF,CO,H (Nacalai Tesque; purity *>99%),* commercially received in sealed vials, was dissolved in toluene or carbon tetrachloride $(CCl₄)$ without further purification. $SnCl₄$ (Wako Chemicals; purity >97%) was distilled under reduced pressure over phosphorus pentoxide. ZnC1, (Aldrich; 1.0 **M** solution in diethyl ether) was commercially supplied as a solution. nBu,NCl (Tokyo Kasei) was used as received. It **was** vacuum dried just before use and dissolved in dry and distilled methylene chloride in a nitrogen-filled dry-box. Deuterated methylene chloride (CD,Cl,) *(Wako* Chemicals; 99.75 atom% D) and toluene- d_8 (Aldrich; >99 atom% D) were dried overnight over baked molecular sieves 3A just before use. Methylene chloride (CH_2Cl_2) and carbon tetrachloride (CCI_4) as solvents were washed with 10% aqueous sodium hydroxide and then with water, dried overnight with calcium chloride and doubly distilled over phosphorus pentoxide and then over calcium hydride before use.⁴ Diethyl ether $(Et₂O)$ (Dojin; purity $>99\%$, anhydrous) for $ZnCl₂$ solution was distilled in the presence of LiAlH, before **use.** Silver hifluoroacetate (AgOCOCF,) (Aldrich; purity **>98%)** was vacuum dried and dissolved in toluene- d_8 before use. Ethyl hifluoroacetate (CF,CO,C,H,; **9)** *(Wako* Chemicals; purity >98%) was used as received.

Synthesis of $CF₃CO₂H-IBVE$ adduct (4).⁸ The adduct 4 was synthesized by magnetically stirring a mixture of $CF₃CO₂H$ and IBVE in toluene at $0^{\circ}C$ (for polymerization initiator) or in CCl₄ at 0° C (for model reactions). The clean and quantitative formation of the adduct in both solvents was confirmed by H and H^3C **NMR** spectroscopy. The HC1 adduct **10** was prepared similarly.⁹

Synthesis *of* tetrabutylammonium trifluoroacetate $(nBu₄NOCOCF₃)$. This salt was prepared by adding a solution of AgOCOCF₃ in toluene (25%, w/v; 19 ml) to a solution of $nBu₄NC1$ in $CH₂Cl₂$ (10%, w/v; 60 ml) at room temperature. After stirring for 10 min, the precipitated silver chloride was filtered off. The product was isolated by evaporating the solvents under reduced pressure and purified by reprecipitation from *dry,* distilled n-hexane to give the trifluoroacetate as a white powder; yield 74% from AgOCOCF₃. It was vacuum dried and dissolved in dry and distilled CH₂Cl₂ in a nitrogen-filled dry-box just before use.

Polymerization procedures. Polymerization was carried out under dry nitrogen in baked glass tubes equipped with a three-way tap. The reaction was initiated by the sequential addition of prechilled solutions of 4 (in toluene; $\overline{0.50 \text{ ml}}$ and SnCl_4 (in CH₂Cl₂; 0.50 ml) or ZnCl₂ (in Et₂O; 0.50 ml) via dry syringes into a monomer solution (in CH_2Cl_2 ; 4.0 ml) containing IBVE (0.66 ml) and CCl, (0.20 **mi).** For polymerizations in the presence of nBu₄NCl, the salt was dissolved in $SnCl₄$ solution prior to initiation. After predetermined intervals, the polymerization was terminated with prechilled methanol (2.0 ml) containing a small amount of ammonia. Monomer conversion was determined from its residual concentration measured by gas chromatography with the CCl, **as** an internal standard. The polymer yield by gravimetry was in good agreement with the gas chromatographic conversion of the monomer.

To remove initiator and MX_n residues, the quenched reaction mixtures with $4 - SnCl₄$ were washed with dilute hydrochloric acid, aqueous sodium hydroxide solution and then with water; those with $4 - ZnCl_2$ were washed only with water. These solutions were evaporated to dryness under reduced pressure and vacuum dried to give the product polymers. The MWD of the polymers was measured by size-exclusion chromatography (SEC) in chloroform at room temperature on a Jasco Trirotar-V chromatograph equipped with three polystyrene gel columns (Shodex K-802, K-803 and K-804). The \overline{M}_n and $\overline{M}_{\rm w}/\overline{M}_{\rm n}$ values were calculated from SEC eluograms on the basis of a polystyrene calibration.

'H, I9F and **"C** *NMR* spectroscopy and model reactions. ¹H, ¹⁹F and ¹³C NMR spectra were recorded on a JEOL JNM-GSX270 spectrometer, operating at 67.9 MHz (¹³C NMR) (CD₂Cl₂ for locking). The main parameters were as follows: H NMR, spectral width = 6002.4 Hz (22.17 ppm), pulse width = $4.3 \,\mu s$ (45°), acquisition time + pulse delay = 30 s , data points = 16,384, number of transients = $8(4 \text{ min} \text{ for one})$ spectrum); ¹⁹F NMR, spectral width = $10,000 \cdot 0$ Hz (39.34 ppm), pulse width = $11.0 \,\mu s$ (45°), acquisition time $+$ pulse delay = 30 s, data points = 16,384, number of transients = 12 (6 min for one spectrum); ¹³C NMR (white-noise decoupled from ${}^{1}\hat{H}$), spectral width $= 20,000.0$ Hz (294.38 ppm), pulse width $= 4.0 \,\mu s$ (45"), acquisition time +pulse delay= 3.0 **s,** data points = $32,768$, number of transients = $500-2000$ (30-120 min for one spectrum). The probe temperature was regulated with a JEOL NM-GVT3 variable-temperature apparatus (fluctuation ≤ 1 °C). The model reactions of 4 or **10** and Lewis acids (MX,) were started by adding a solution of the adduct (1.0 **M;** 0.12 ml) to a prechilled CD₂Cl₂ solution of SnCl₄ or ZnC1, (0.48 ml) in a septum-capped NMR tube (5 mm o.d.) under dry nitrogen via dry syringes at -78 °C. For the reaction in the presence of a salt, it was dissolved in the solution of SnCl, beforehand. The **tube** was vigorously shaken at -78 °C and immediately placed in the thermostated probe. The chemical shifts in H and H^3C NMR spectra were determined relative to the signals of the residual CH₂Cl₂ (¹H 5.32 ppm and ¹³C 55.8 ppm, both from Me₄Si) in the deuterated solvent, and those in ¹⁹F NMR spectra to the signal of ⁹F NMR spectra to the signal of hifluoromethylbenzene (C,H,CF,; *64.0* ppm from $CFC1₃$) as an external standard dissolved in toluene- $d₈$ in a capillary. The interactions of $SnCl₄$ and/or $nBu₄NCl$ with $nBu_4NOCOCF_3$ (8), $CF_3CO_2C_2H_5$ (9) and AgOCOCF, were analysed in a similar way by adding a solution of each acetate (0.12 ml; **8** in CD,Cl,; **9** in CCl₄; AgOCOCF₃ in toluene- d_8) to a prechilled solution of $SnCl₄$ (in CD₂Cl₂; 0.48 ml) at -78 °C. 270.7 MHz (${}^{1}H$ NMR), 254.1 MHz (${}^{19}F$ NMR) and

ACKNOWLEDGEMENTS

We thank Professor Ken'ichi Takeuchi, Department of Energy and Hydrocarbon Chemistry, Kyoto University, for helpful discussions on NMR analysis. M.K. is also grateful to the Japan Society for the Promotion of Sciences for Fellowships for Japanese Junior Scientists.

REFERENCES

- 1. **M.** Kamigaito, H. Katayama, M. Sawamoto and T. Higashimura, *Polyrn. Prepr. Jpn., Engl. Ed.* **42** (2), **E866 (1993).**
- 2. M. Sawamoto, *Macrornol. Syrnp.* **88, 105 (1994).**
- 3. (a) M. Szwarc, *Nature (London)* 178, 1168 (1956); (b) M. Szwarc, M. Levy and R. Milkovich, *J. Am. Chem. SOC.* 78,2656 (1956).
- 4. (a) M. P. Dreyfuss and P. Dreyfuss, *Polymer* 6, 93 (1965); (b) C. E. H. Bawn, **R.** M. Bell and A. Ledwith, *Polymer* 6, 95 (1965).
- 5. M. Miyamoto, M. Sawamoto and T. Higashimura, *Macromolecules* 17,265,2228 (1984).
- 6. For recent reviews, see (a) M. Sawamoto, *Prog. Polym. Sci.* **16**, 111 (1991); (b) J. P. Kennedy and B. Iván, *Designed Polymers by Carbocationic Macromolecular Engineering: Theory and Practice.* Hanser, Munich (1992); (c) M. Sawamoto, *Trends Polym. Sci.* 1, 111 (1993).
- 7. See, for example: (a) P. Sigwalt, *Makromol. Chem., Macromol. Symp.* 47, 179 (1991); (b) M. Szwarc, *Makromol. Chem., Rapid Commun.* **13,** 147 (1992); (d) K.

Matyjaszewski, *J. Polym. Sci., Part A, Polym. Chem.* **31,** 995 (1993); *Macromolecules* 26, 1787 (1993).

- 8. M. Kamigaito, M. Sawamoto and T. Higashimura, *Macromolecules* 25,2587 (1992).
- 9. M. Kamigaito, Y. Maeda, M. Sawamoto and T. Higashimura, *Macromolecules* 26, 2670 (1993).
- 10. H. Katayama, M. Kamigaito, M. Sawamoto and T. Higashimura, *Macromolecules,* in press.
- 11. (a) M. Kamigaito, M. Sawamoto and T. Higashimura, *Macromolecules* 24, 3988 (1991); (b) M. Kamigaito, K. Yamaoka, M. Sawamoto and T. Higashimura, *Macromolecules* 25, *6400* (1992); (c) K. Matyjaszewski and C. H. Lin, *Makromol. Chem., Makromol. Symp.* 47, 221 (1991); (d) J. E. Puskas, G. Kaszas and M. Litt, *Macromolecules* 24, 5278 (1991).
- 12. F. G. Bordwell, *Acc. Chem. Res.* 21,456 (1988).